![]() |
Show 150 posts per page |
.dsy:it. (http://www.dsy.it/forum/)
- Matematica del discreto (http://www.dsy.it/forum/forumdisplay.php?forumid=249)
-- Aiuto per Esercizio (http://www.dsy.it/forum/showthread.php?threadid=43428)
Aiuto per Esercizio
Ciao ragazzi!!! Qualcuno gentilmente mi potrebbe aiutare con questo esercizio??
ciao! possiamo parlarne se ti va, ma vediamo di capire quale è il problema prima, no?
Le prime due richieste le ho capite ma non riesco a scriverle con un linguaggio matematico, in particolare la prima è corretta poiché 3*4=-6*(-3) mentre la seconda alla coppia 1,3 per completare la relazione può andare -3,-1. Mentre nella seconda parte dell'esercizio mi perdo proprio...
OK! ma considera che nel primo rigo le domande sono 3 le richiesta, e non 2 come sembra che tu abbia pensato.
-) la prima è chiara, e come dici tu, (3,4) e (-6,-2) sono nella relazione alpha!
-) la seconda richiesta di chiede di determinare l'INSIEME delle coppie (x,y) tali che [(1,3)alpha(x,y)]. così, per esempio, (-3,-1) appartiene all'insieme in questione perchè [(1,3)alpha(-3,-1)] in quanto 1*3=-3*-1 (in altre parole si tratta di determinare l'insieme delle immagini di (1,3) attraverso alfha, dopo aver determinato questo insieme conta elementi contiene!)
-) la terza ti chiede se la relazione alpha è una funzione! (e la risposta segue immediatamente dal punto precedente! quante immagini ha (1,3)? )
spero di essere stato chiaro. pensa a risolvere questi punti prima, del resto parliamo dopo!
Sei stato chiarissimo grazie!! Mi puoi illuminare anche per il resto?
vediamo un poco!
nella seconda riga della domanda ci sono due richieste.
-) la prima chiede se alpha è una relazione di equivalenza.
-) la seconda se OGNI alpha-classe ha 4 elementi (quindi se non lo fosse, dovresti esibire un controesempio, cioè una alpha-classe con un numero di elementi diverso da 4, per esempio maggiore o anche uguale ad omega...). ricorda che una alfha-classe di un elemento è l'insieme delle sue immagini.
nella terza riga ci sono invece 3 richieste:
-) la cardinalità dell'insieme quoziente di X su alpha è 3, ovvero se la cardinalità dell'insieme delle alpha-classi è 3 (se esistono SOLO tre alpha-classi)
-) qui bisogna stabilire se alpha intersecato la sua inversa è uguale alla relazione di identità. ricorda che se ((x,y),(z,w)) è un elemento alpha, cioè se (x,y)alpha(z,w), allora ((z,w),(x,y)) è un elemento della inversa di alpha e viceversa, e che due insiemi sono diversi se esiste un elemento che appartiene ad uno dei due ma non all'altro.
-) verifica se la composizione di alpha con la sua inversa è o meno contenuto in alpha. potresti anche dimostrarlo per assurdo!
fammi sapere!
leggi *per esempio maggiore o anche uguale ad omega* come *per esempio maggiore di 4 o uguale ad omega*
Allora io avrei fatto così:
Seconda riga
-)alfa è una relazione di equivalenza poiché è riflessiva simmetrica e transitiva,infatti
(4 3)=(4 3)
(4 3)=(3 4)
(4 3)=(-6 -2) e (-6 -2) =(1 12) quindi (4 3)=(1 12)
-)ogni alfa classe ha tanti elementi quanti sono.le coppie di numeri in Z tali che il prodotto sia uguale. Nel caso (1 3) gli elementi di alfa classe sono 4, (1 3),(-1 -3),(-3 -1),(3 1), ma per esempio nel caso (3 5) gli elementi non sono 4 ma (3 5),(5 3),(-3 -5),(-5 -3),(1 15),(15,1),(-15 -1),(-1 -15)
Terza riga
-)ogni alfa classi è associata a un prodotto di una coppia di numeri in Z quindi le alfa classi sono.infinite
Mentre gli ultimi due non li ho proprio capiti
bene, mi sembra che siamo sulla buona strada!
vorrei farti notare che il primo punto in cui mostri che alpha è una relazione di equivalenza non va bene!
devi mostrare che le proprietà valgono per elementi qualsiasi, il fatto che valgano per le coppie che indichi tu è una CONSEGUENZA.
per esempio, alpha è riflessiva perché l'uguaglianza è riflessiva, ovvero xy=xy per ogni coppia di numeri x ed y in Z, e quindi (x,y)alpha(x,y).
allego un file con gli ultimi due, spero che sarà di aiuto!
Grazie mille sei stato molto gentile e disponibile!!!
All times are GMT. The time now is 22:12. | Show all 11 posts from this thread on one page |
Powered by: vBulletin Version 2.3.1
Copyright © Jelsoft Enterprises Limited 2000 - 2002.